

BICED PROCEEDING BUKITTINGGI INTERNATIONAL CONFERENCE ON EDUCATION

https://proceedings.uinbukittinggi.ac.id/bicede-ISSN:xxxx-xxxx | p-ISSN:xxxx-xxxx

Designing an Obe-Based Learning Model Using Fuzzy Logic at the Uin Bukittinggi Postgraduate Program

Liza Efriyanti¹, Syamsurizal², Oktavia Dewi Afja³, Indra Devi⁴

*Corespondence:

Email:

lizaefriyanti@uinbukittinggi.ac.id

Authors Affiliation:

¹Universitas Islam Negeri Sjech M. Djamil Djambek Bukittinggi, *Indonesia*

^{2,3,4} Islamic Education Management Postgraduate Student Universitas Islam Negeri Sjech M. Djamil Djambek Bukittinggi, *Indonesia*

Article History:

Submission: September 20,

2023

Revised: September 28, 2023 Accepted: October 15, 2023 Published: October 30, 2023

Keyword : artificial intelligence, fuzzy logic, learning models, OBE-based learning

Kata Kunci : kecerdasan buatan, model pembelajaran, model pembelajaran berbasis OBE

Abstract

Higher education, especially in the context of the Master of Islamic Education Management Study Program at UIN Bukittinggi, is increasingly approaching the global challenge of preparing graduates who are competent and adaptive in the 21st century. One approach that has received attention is Outcome-Based Education (OBE) which emphasizes the achievement of results. learning. This article discusses the design of an OBEbased learning model that utilizes fuzzy logic as a tool to improve the quality of the learning process in the Master of Islamic Education Management Study Program at UIN Bukittinggi. The proposed learning model integrates the OBE concept with fuzzy logic to measure and analyze student learning outcomes more accurately. The research methodology is system modeling using the stages of the Mamdani method of fuzzy logic using the Matlab application. Input variables consist of: Student Learning Outcome Data, Competency Standards and Achievements, Environmental Factor Data. Meanwhile, the output variables consist of: Assessment-Centered Learning (ACL), Backward Design, Project-Based Learning (PBL), Problem-Based Learning (PBL) and Inquiry-Based Learning. Rules in fuzzy logic consist of 78 rules. Based on the design obtained, lecturers can choose an appropriate and effective learning model in order to increase the effectiveness and efficiency of the learning process in the Master of Islamic Education Management Study Program at UIN Bukittinggi, as well as providing deeper insight into student competency achievement . Thus,

Abstrak

Pendidikan tinggi, khususnya dalam konteks Program Studi S2 Manajemen Pendidikan Islam di UIN Bukittinggi, semakin mendekati tantangan global dalam mempersiapkan lulusan yang kompeten dan adaptif pada abad 21. Salah satu pendekatan yang telah mendapatkan perhatian adalah Outcome-Based Education (OBE) yang menekankan pencapaian hasil pembelajaran. Artikel ini membahas perancangan sebuah model pembelajaran berbasis OBE yang memanfaatkan logika fuzzy sebagai alat untuk meningkatkan kualitas proses pembelajaran di Prodi S2 Manajemen Pendidikan Islam UIN Bukittinggi. Model pembelajaran yang diusulkan mengintegrasikan konsep OBE dengan logika fuzzy untuk mengukur dan menganalisis pencapaian hasil pembelajaran mahasiswa secara lebih akurat. Metodologi penelitian berupa pemodelan system dengan menggunakan tahap-tahap pada metode mamdani dari logika fuzzy dengan menggunakan aplikasi matlab.Variabel input terdiri atas: Data Hasil Pembelajaran Mahasiswa, Standar Capaian Pembelajaran, Lingkungan. Sementara variable output terdiri Assessment-Centered Learning (ACL), Backward Design, Project-Based Learning (PBL), Problem-Based Learning (PBL) dan Inquiry-Based Learning. Rules pada logika fuzzy terdiri atas 78 buah rules. Berdasarkan rancangan yang diperoleh maka dosen dapat memilih model pembelajaran yang tepat dan efektif agar dapat meningkatkan efektivitas dan efisiensi proses pembelajaran di Prodi S2 Manajemen Pendidikan Islam UIN Bukittinggi, serta memberikan wawasan yang lebih mendalam tentang pencapaian kompetensi mahasiswa. Dengan demikian,

artikel ini menyumbangkan pandangan baru terkait dengan pengembangan kurikulum berbasis OBE dengan pendekatan logika fuzzy di tingkat pendidikan tinggi, khususnya dalam konteks pendidikan Islam di Indonesia.

INTRODUCTION

Improving the quality of higher education, especially at postgraduate level, is one of the key elements in developing quality human resources(Asmuni, 2021) (Damanik, 2020). UIN Sjech M.Djamil Djambek Bukittinggi (UIN Bukittinggi) as one of the tertiary institutions in Indonesia needs to continue to improve the quality of its education so that it can compete globally. Current curriculum changes focus more on outcome-based education. This has a tremendous impact on educators and students in participating in the lecture process at higher education. Curriculum changes are in accordance with a shift in educational paradigms that are in line with technological developments and global society's way of thinking and market needs in order to improve human welfare(Efriyanti & Annas, 2020) (Nafiati, 2021).

OBE-Based Education (Outcome-Based Education) is an educational approach that focuses on achieving learning outcomes by students. By implementing this approach, universities can ensure that their graduates have competencies that match the needs of the job market(Ally, 1999). The Industrial Revolution 4.0 emphasizes the importance of producing graduates who have competencies that are relevant to the changing demands of the job market(Simanjuntak, 2019) (Damanik, 2020) (Efriyanti & Annas, 2020). The OBE (Outcome-Based Education) based learning model is very relevant in this context because it focuses on learning outcomes that can be measured and are relevant to industry needs.(Angga et al., 2022).

The learning process at postgraduate level is often more complex than at other levels of education. Students at this level are expected to have analytical skills and a deeper understanding in various disciplines. Islamic Education Management Masters students need to acquire competencies that cover various aspects, including theoretical knowledge, practical skills, and attitudes necessary to succeed in this field. The following are several competencies that Master of Islamic Education Management students must have: theoretical knowledge, analytical and research skills, managerial abilities, communication skills, understanding of educational policies, critical thinking skills, adaptability and innovation, professional ethics, multicultural skills and collaboration skills(Ripani, 2020) (Asmuni, 2021) (Nurhayani et al., 2022).

Fuzzy Logic is a tool that can be used to overcome uncertainty and complexity in decision making. By applying this logic in designing learning models, the process of evaluating student learning outcomes can be more adaptive and flexible (Pranolo, 2014) (Teddy Nasastra, 2021) (Dini & Adri, 2021). Industrial Revolution 4.0 emphasizes the need to adapt quickly to changes in technology and society(Widodo & Wardani, 2020). Using fuzzy logic in designing learning models can make the education system more adaptive and able to handle uncertainty.

Society 5.0 is a concept that combines advanced technology with a society that focuses on welfare and improving the quality of life. Designing a learning model based on OBE and using fuzzy logic can help create graduates who can contribute to this technology-based society. Society 5.0 emphasizes the importance of connectivity and collaboration between individuals, companies and educational institutions. The OBE-based learning model can promote collaboration and interaction between students, lecturers and the industrial sector(Damanik, 2020) (Kristiana et al., 2020).

There is a need for applied research in the form of designing an OBE-based learning model that utilizes fuzzy logic as a tool to improve the quality of the learning process in the Master of Islamic Education Management Study Program at UIN Bukittinggi. This kind of research can make a significant contribution in improving the quality of higher education at UIN Bukittinggi

and its surroundings, because educators, especially lecturers, can quickly and accurately make decisions on learning models that are suitable for OBE from the courses taught according to the input that influences decisions. which is taken based on the decision system that the author will design in this article, using the fuzzy logic method (Mamdani model type 1).

METHODS

The research methodology is in the form of system modeling using the stages of the Mamdani method of fuzzy logic using the Matlab application(Pakyürek et al., 2019).Input variables consist of: Data on Student Learning Outcomes, Competency Standards and Learning Achievements, Data on Environmental Factors. Meanwhile, the output variables consist of: Assessment-Centered Learning (ACL), Backward Design, Project-Based Learning (PBL), Problem-Based Learning (PBL) and Inquiry-Based Learning.

Fuzzy logic is a decision-making method that overcomes uncertainty and complexity by generalizing inexact information into fuzzy (linguistic) values. In the context of designing a learning model, there are general stages that can be carried out(Pakyürek et al., 2019) (Nasution & Prakarsa, 2021) (Dini & Adri, 2021) (Dutta, 2018):

1. Determination of Input and Output Variables:

Determine the input and output variables that will be used in your fuzzy logic system. For example, input variables could be "Student Learning Outcome Data," "Competency Standards and Learning Outcomes," and "Environmental Factor Data," while output variables could be "Assessment-Centered Learning (ACL)," "Backward Design," "Project -Based Learning (PBL)," "Problem-Based Learning (PBL)," and "Inquiry-Based Learning."

2. Fuzzification of Input Variables:

Convert input data into fuzzy values using appropriate membership functions. For example, "Student Learning Outcome Data" can be converted into fuzzy values such as "Good," "Adequate," and "Poor."

3. Fuzzy Rule Development:

Determine the rules that connect input variables with output variables. These rules can take the form of fuzzy logic statements such as "If Student Learning Outcome Data is 'Good,' and Competency Standards are 'High,' then Assessment-Centered Learning (ACL) is 'High.'"

4. Fuzzy Rule Merging:

Combine the fuzzy rules that have been created to get a whole fuzzy logic system.

5. Fuzzy Inference Process:

This process involves the use of fuzzy rules that have been combined to carry out inference or draw conclusions related to output variables. This involves calculations involving fuzzy values.

6. Defuzzification:

The results of the inference process are fuzzy values in the output variables. Defuzzification is the process of turning these fuzzy values back into concrete values or actions that can be taken. For example, changing the fuzzy value "High" on "Assessment-Centered Learning (ACL)" to a concrete level such as "85."

7. Evaluation and Adjustment:

After getting the defuzzification results, you can evaluate whether the results are in accordance with the objectives of the designed learning model. If necessary, adjustments are made to the fuzzy rules or other parameters in the fuzzy logic system.

8. Implementation:

Finally, the fuzzy logic-based learning model that has been designed can be implemented in the educational context at the UIN Bukittinggi Postgraduate School.

RESULT AND DISCUSSION

RESULT

In artificial intelligence in solving cases using fuzzy logic, the input and output variables are first determined. As for the design of an OBE-based learning model using fuzzy logic in the Master of Islamic Education Management Study Program at UIN Sjech M.Djamil Djambek Bukittinggi (UIN Bukittinggi), it consists of input variables, which consist of: Student Learning Outcomes Data, Competency Standards and Learning Achievements, Data Environmental factor. Meanwhile, the output variables consist of: Assessment-Centered Learning (ACL), Backward Design, Project-Based Learning (PBL), Problem-Based Learning (PBL) and Inquiry-Based Learning. The membership function table for the input and output variables is in the table 1 to 3 are input variables, while tables 4 to 8 are output tables.

Table 1. Input Variable: Student Learning Outcome Data

Label	Membership Functions
Bad	[0, 0, 50]
Enough	[40, 50, 60]
Good	[50, 100, 100]

Table 2.Input Variables: Competency Standards and Learning Outcomes

Label	Membership Functions
Low	[0, 0, 50]
Currently	[40, 50, 75]
Tall	[50, 100, 100]

Table 3.Input Variables: Environmental Factor Data

Label	Membership Functions
Does not support	[0, 0, 45]
Neutral	[40, 50, 65]
Support	[60, 100, 100]

Table 4.Output Variable: Assessment-Centered Learning (ACL)

Label	Membership Functions
Low	[0, 0, 50]
Currently	[40, 50, 60]
Tall	[50, 100, 100]

Table 5. Output Variables: Backward Design

Label	Membership Functions
Low	[0, 0, 50]
Currently	[40, 50, 60]

Tall	[50, 100, 100]		
Ta	Table 6.Output Variable: Project-Based Learning (PBL)		
Label	Membership Functions		
Low	[0, 0, 50]		
Currently	[40, 50, 60]		
Tall	[50, 100, 100]		

Table 7.Output Variable: Problem-Based Learning (ProblemBL)

Label	Membership Functions
Low	[0, 0, 50]
Currently	[40, 50, 60]
Tall	[50, 100, 100]

Table 8. Output Variable: Inquiry-Based Learning

Label	Membership Functions
Low	[0, 0, 50]
Currently	[40, 50, 60]
Tall	[50, 100, 100]

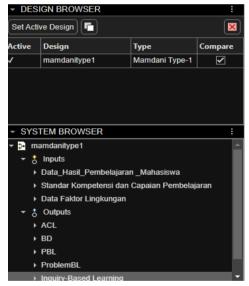
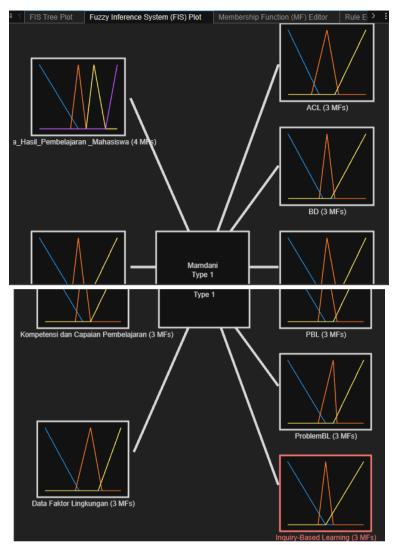
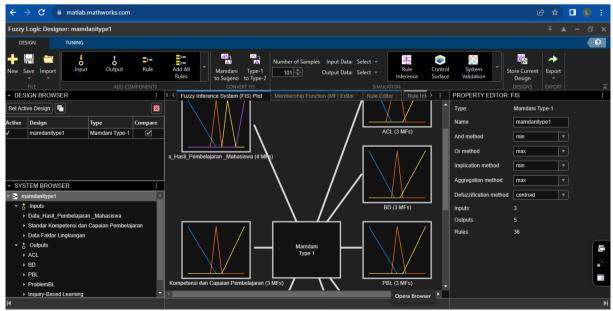




Figure 1. Designing Input and Output Variables using Fuzzy Logic Designer

Figure 2. Design of a Fuzzy Inference System OBE-based Learning Model in the Master of Islamic Education Management Study Program at UIN Bukittinggi

Figure 3. Matlab Application Display: Designing an OBE-based Learning Model for the Master of Islamic Education Management Study Program at UIN Bukittinggi using the Mamdani Type 1 Model

For each input and output variable, a membership function graph is created using the Matlab application. The following is a graph of the input variables for designing an OBE-based learning model:

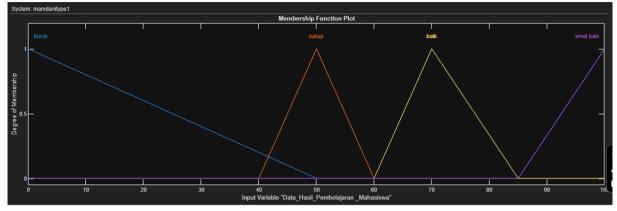


Figure 4. Membership Function Student Learning Outcome Data

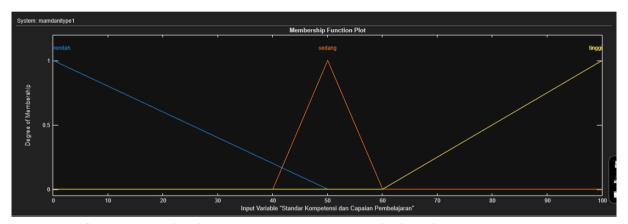


Figure 5. Membership Function Competency Standards and Learning Outcomes

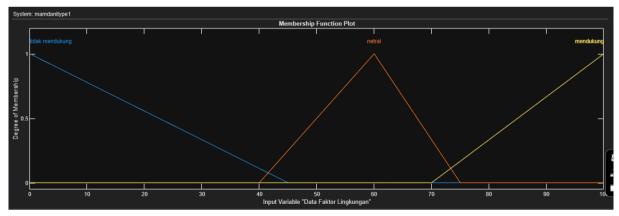


Figure 6. Membership Function Environmental Factor Data

Meanwhile, the graph of the output variable for designing an OBE-based learning model:

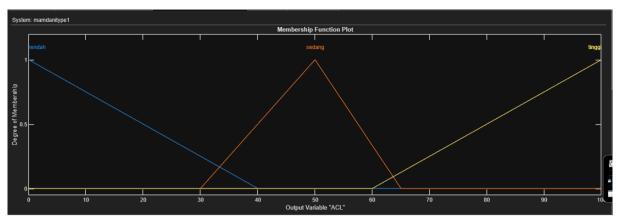


Figure 7. Membership Function ACL Learning Model

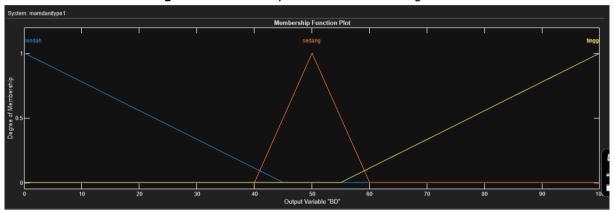


Figure 8. Membership Function BD

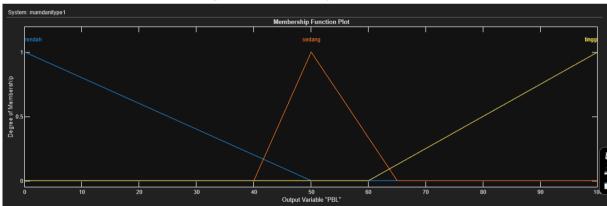


Figure 9. Membership Function PBL

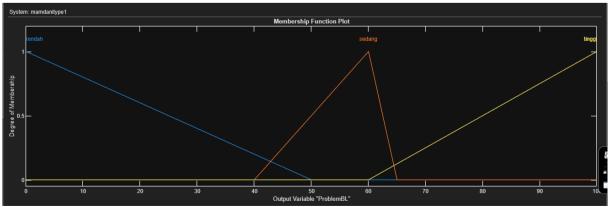


Figure 10. Membership Function Problem Based Learning

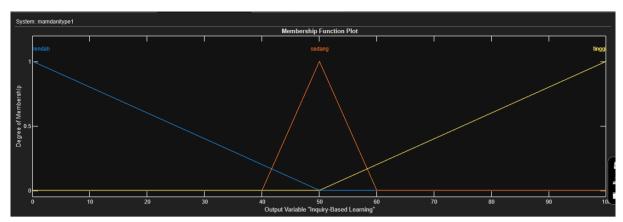


Figure 11. Membership Function Inquiry Based Learning

There are 38 rules generated from the fuzzy logic method using the Matlab application (fuzzy logic designer: mandanitype1), according to the picture:

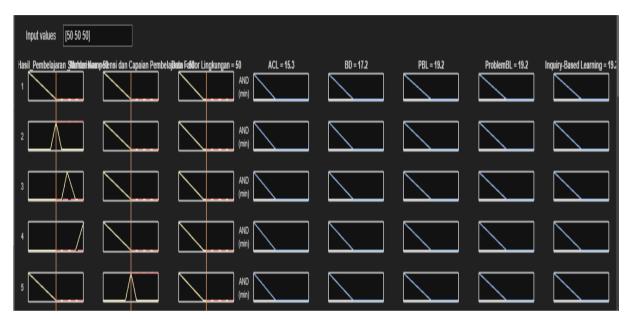
- 1. If Student Learning Results Data is poor and Competency Standards and Learning Achievements are low and Environmental Factor Data is not supportive then ACL is low, BD is low, PBL is low, ProblemBL is low, Inquiry-Based Learning is low
- 2. If Student Learning Results Data is sufficient and Competency Standards and Learning Achievements are low and Environmental Factor Data is not supportive then ACL is low, BD is low, PBL is low, ProblemBL is low, Inquiry-Based Learning is low
- 3. If Student Learning Results Data is good and Competency Standards and Learning Achievements are low and Environmental Factor Data is not supportive then ACL is low, BD is low, PBL is low, ProblemBL is low, Inquiry-Based Learning is low

.

- 36. If Student Learning Results Data is very good and Competency Standards and Learning Achievements are high and Environmental Factor Data is supportive then ACL is low, BD is low, PBL is low, ProblemBL is low, Inquiry-Based Learning is low
- 37. If Student Learning Results Data is poor and Competency Standards and Learning Achievements are low and Environmental Factor Data is not supportive then ACL is low, BD is low, PBL is low, ProblemBL is low, Inquiry-Based Learning is low
- 38. If Student Learning Results Data is sufficient and Competency Standards and Learning Achievements are low and Environmental Factor Data is not supportive then ACL is low, BD is low, PBL is low, ProblemBL is low, Inquiry-Based Learning is low

Syster	n: mamdanilype1			
Add A	Add All Possible Rules Clear All Rules			
	Rule	Weight	Name	П
1	If Data_Hasil_Pembelajaran _Mahasiswa is buruk and Standar Kompetensi dan Capaian Pembelajaran is rendah and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah , PB	1	rule1	<u> </u>
2	If Data_Hasil_Pembelajaran _Mahasiswa is cukup and Standar Kompetensi dan Capaian Pembelajaran is rendah and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah , PB	1	rule2	
3	If Data_Hasil_Pembelajaran_Mahasiswa is baik and Standar Kompetensi dan Capaian Pembelajaran is rendah and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah, PBL i	1	rule3	
4	If Data_Hasil_Pembelajaran _Mahasiswa is amat baik and Standar Kompetensi dan Capaian Pembelajaran is rendah and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah ,	1	rule4	
5	If Data_Hasil_Pembelajaran _Mahasiswa is buruk and Standar Kompetensi dan Capaian Pembelajaran is sedang and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah , PB	1	rule5	
6	If Data_Hasil_Pembelajaran _Mahasiswa is cukup and Standar Kompetensi dan Capaian Pembelajaran is sedang and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah, PB	1	rule6	
7	If Data_Hasil_Pembelajaran _Mahasiswa is baik and Standar Kompetensi dan Capaian Pembelajaran is sedang and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah, PBL	1	rule7	
8	If Data_Hasil_Pembelajaran_Mahasiswa is amat baik and Standar Kompetensi dan Capaian Pembelajaran is sedang and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah ,	1	rule8	
9	If Data_Hasil_Pembelajaran _Mahasiswa is buruk and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah, PBL i	1	rule9	
10	If Data_Hasil_Pembelajaran_Mahasiswa is cukup and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah, PBL i	1	rule10	
11	If Data_Hasil_Pembelajaran_Mahasiswa is baik and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah , PBL is	1	rule11	
12	If Data_Hasil_Pembelajaran _Mahasiswa is amat baik and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is tidak mendukung then ACL is rendah, BD is rendah , P	1	rule12	
13	If Data_Hasil_Pembelajaran _Mahasiswa is buruk and Standar Kompetensi dan Capaian Pembelajaran is rendah and Data Faktor Lingkungan is netral then ACL is rendah, BD is rendah , PBL is rendah,	1	rule13	
14	If Data_Hasil_Pembelajaran _Mahasiswa is cukup and Standar Kompetensi dan Capaian Pembelajaran is rendah and Data Faktor Lingkungan is netral then ACL is rendah, BD is rendah , PBL is rendah,	1	rule14	

19 If Data_Hasil_Pembelajaran Mahasiswa is baik and Standar Kompetensi dan Capaian Pembelajaran is sedang and Data Faktor Lingkungan is netral then ACL is rendah, BD is rendah , PBL is rendah, . 1 rule19 1 rule20 If Data_Hasil_Pembelajaran _Mahasiswa is amat baik and Standar Kompetensi dan Capaian Pembelajaran is sedang and Data Faktor Lingkungan is netral then ACL is rendah, BD is rendah, PBL is ren.. If Data_Hasil_Pembelajaran _Mahasiswa is buruk and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is netral then ACL is rendah, BD is rendah, P.BL is rendah, P.BL is rendah, P.B. is rendah 1 rule21 If Data_Hasii_Pembelajaran_Mahasiswa is cukup and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is netral then ACL is rendah, BD is rendah, PBL is rendah, P. 1 rule22 If Data Hasil Pembelaiaran Mahasiswa is baik and Standar Kompetensi dan Capaian Pembelaiaran is tinggi and Data Faktor Lingkungan is netral then ACL is rendah. BD is rendah . PBL is rendah . Pr. 1 rule23 1 rule24 24 If Data_Hasil_Pembelajaran _Mahasiswa is amat baik and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is netral then ACL is rendah, BD is rendah, PBL is renda... 1 rule25 25 If Data Hasil Pembelajaran Mahasiswa is buruk and Standar Kompetensi dan Capajan Pembelajaran is rendah and Data Faktor Lingkungan is mendukung then ACL is rendah. BD is rendah. PBL is re. 1 rule26 If Data_Hasil_Pembelajaran_Mahasiswa is cukup and Standar Kompetensi dan Capaian Pembelajaran is rendah and Data Faktor Lingkungan is mendukung then ACL is rendah, BD is rendah, PBL is re. 1 rule27 If Data Hasil Pembelaiaran Mahasiswa is baik and Standar Kompetensi dan Capaian Pembelaiaran is rendah and Data Faktor Lingkungan is mendukung then ACL is rendah. BD is rendah. PBL is ren. 1 rule28 28 If Data_Hasil_Pembelajaran _Mahasiswa is amat baik and Standar Kompetensi dan Capaian Pembelajaran is rendah and Data Faktor Lingkungan is mendukung then ACL is rendah, BD is rendah, PBL i. 1 rule29 If Data_Hasil_Pembelajaran _Mahasiswa is buruk and Standar Kompetensi dan Capaian Pembelajaran is sedang and Data Faktor Lingkungan is mendukung then ACL is rendah, BD is rendah, PBL is re.. 1 rule30 If Data Hasil Pembelaiaran Mahasiswa is cukup and Standar Kompetensi dan Capaian Pembelaiaran is sedang and Data Faktor Lingkungan is mendukung then ACL is rendah. BD is rendah. PBL is r... 1 rule31 If Data Hasil Pembelajaran Mahasiswa is baik and Standar Kompetensi dan Capaian Pembelajaran is sedang and Data Faktor Lingkungan is mendukung then ACL is rendah, BD is rendah, PBL is ren. If Data_Hasil_Pembelajaran _Mahasiswa is amat baik and Standar Kompetensi dan Capaian Pembelajaran is sedang and Data Faktor Lingkungan is mendukung then ACL is rendah, BD is rendah, PBL . 1 rule32 1 rule33 If Data Hasil Pembelaiaran Mahasiswa is buruk and Standar Kompetensi dan Capaian Pembelaiaran is tinggi and Data Faktor Lingkungan is mendukung then ACL is rendah, BD is rendah, PBL is ren. 34 If Data_Hasil_Pembelajaran _Mahasiswa is cukup and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is mendukung then ACL is rendah, BD is rendah , PBL is ren... 1 rule34 If Data_Hasil_Pembelajaran _Mahasiswa is baik and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is mendukung then ACL is rendah, BD is rendah , PBL is rend. 1 rule35 ff Data_Hasil_Pembelajaran_Mahasiswa is amat baik and Standar Kompetensi dan Capaian Pembelajaran is tinggi and Data Faktor Lingkungan is mendukung then ACL is rendah, BD is rendah, PBL is.. 1 rule36


Figure 12. Rules for Designing an OBE-based Learning Model in the Master of Islamic Education Management Study Program at UIN Bukittinggi using the Mamdani Type 1 Model

Based on the results of designing an OBE-based learning model in the Master of Islamic Education Management Study Program at UIN Bukittinggi using the Mamdani type 1 model, the design results obtained can be implemented in decision support by the course lecturer, based on the input that has been determined by the system. For example, it is known that student learning outcome data is: 50; competency standards and learning outcomes: 50 and environmental factor data: 50. So based on this input, the following results are obtained, as in Figure 13:

1. ACL Learning Model = 16.3

- 2. Learning Model BD = 17.2
- 3. PBL Learning Model = 19.2
- 4. Problem Based Learning Model = 19.2
- 5. Inquiry Based Learning Model = 19.2

So there are 3 choices of appropriate learning models, namely: PBL Learning Model or Problem Based Learning Model or Inquiry Based Learning Model. The choice of model is handed over to the lecturer in charge of the course by taking into account the learning style and expected learning outcomes in the course. However, the membership value of each learning model will vary depending on the input values and fuzzy rules used.

Figure 13. Inference Engine (Decision) Designing an OBE-based Learning Model in the Master of Islamic Education Management Study Program at UIN Bukittinggi using Mamdani Type 1 model

DISCUSSION

The OBE theory developed by William Spady has influenced learning approaches and curricula in many educational institutions around the world. This approach aims to increase the relevance and effectiveness of education by clearly measuring and achieving desired learning outcomes. The OBE theory developed by Spady provides an important conceptual foundation in curriculum design and learning approaches. The following are some of the main concepts in the OBE theory developed by William Spady(Rasyid et al., 2022) (Dewi, 2023) (KN Karyawati et al., 2022): 1) Outcome (Results) as the Main Focus: OBE theory emphasizes that education must focus on the desired results of the educational process, not just on what is taught or how it is taught. These results are often referred to as "outcomes." These outcomes include the knowledge, skills, attitudes, and understanding that students are expected to achieve after completing an educational program; 2) Determining Clear Outcomes: OBE emphasizes the need to determine clear and measurable outcomes for each stage of education. These outcomes must be specific, measurable, and observable. In the context of the curriculum, these outcomes are often referred to as "learning outcomes" or "competency standards." 3) Achievement of Outcomes by All Students: OBE theory supports the concept that all students should have the opportunity to achieve predetermined outcomes, regardless of their background. This implies differentiation in teaching and assessment methods to help each student reach his or her potential; 4) Student Involvement in the Learning Process: OBE encourages active involvement of students in the learning process. Students are not only recipients of information, but also active in taking a role in achieving their outcomes. This can

involve projects, assignments, and problem-based learning; 5) Curriculum Continuity and Coherence: OBE theory emphasizes the importance of continuity and coherence in the curriculum from one level to the next. The outcomes established at each educational level must be logically connected to the next stage; 6) Valid Measurement and Assessment: OBE requires the use of valid and reliable measurement and assessment tools to measure outcome achievement. This may include the use of tests, assignments, portfolios, or other assessment methods; 7) Adjustment Based on Outcomes: In the context of OBE, teaching and learning approaches can be adjusted based on student progress towards achieving outcomes. This allows flexibility in meeting individual needs; 8) Accountability and Reporting of Results: OBE emphasizes accountability in achieving set outcomes. Education must be able to measure and report student progress in achieving outcomes to all stakeholders, including students, teachers, parents, and educational institutions; 9) Change in School Culture: Implementation of OBE often requires a change in culture in schools and educational institutions. This includes changes in teaching approaches, assessment, school management, and relationships between all stakeholders.

The results of designing using fuzzy logic reflect the use of methods that are useful in overcoming uncertainty and complexity in decision making. This is consistent with the concepts of fuzzy logic in decision making that have been developed by researchers such as Lotfi Zadeh(Nurmantika, 2022) (Nasution & Prakarsa, 2021) (Gentili, 2022). Fuzzy logic allows for more flexible and nuanced judgments based on uncertain information.

Fuzzy logic has several significant benefits in making decisions in the case of designing an OBE-based learning model which was explained previously. Following are some of the benefits of fuzzy logic in this context(Nurmantika, 2022):

1. Uncertainty Handling:

Fuzzy logic allows handling uncertainty and complexity in the decision-making process. In the case of designing learning models, there are various input variables (such as student learning outcomes, competency standards, and environmental factors) that may have uncertain or ambiguous values. Fuzzy logic allows these variables to be expressed as fuzzy values, which reflect the level of uncertainty better than binary (true/false) models.

2. Ability to Include Inexact Information:

In the educational context, it is often difficult to measure parameters precisely. Fuzzy logic allows the use of fuzzy values to better express inexact information. For example, "good" or "fair" levels of input variables cannot always be precisely measured, and fuzzy logic allows for more nuanced assessments.

3. Flexibility in Decision Making:

Fuzzy logic provides flexibility in making decisions based on the resulting fuzzy values. This means that in the case of designing learning models, the results of decision making can include various alternative learning models that suit certain input conditions.

4. Explainable Model:

The results of decision making using fuzzy logic can be explained clearly and interpretively. This allows stakeholders, such as course lecturers, to understand the reasons behind the recommendations provided by the model.

5. Improving Learning Quality:

By considering many relevant factors and generating recommendations based on complex input, fuzzy logic can help improve the quality of learning. This model can help in adapting learning methods to student needs and changing environmental conditions.

6. Time and Resource Savings:

Fuzzy logic can facilitate decision making quickly and efficiently. This can save time and resources that would otherwise be required to collect, integrate, and analyze data manually.

7. Flexibility in Learning Models:

By generating recommendations based on diverse inputs, fuzzy logic allows flexibility in selecting a learning model that suits a particular situation. This can help educational institutions to adapt learning approaches according to student needs.

CONCLUSION

In the case of designing an OBE-based learning model, the use of fuzzy logic can help produce recommendations that are more accurate and responsive to changing conditions in educational institutions. This can strengthen the effectiveness of learning and the quality of education provided by the institution. Lecturers are given the convenience of quickly making decisions, appropriate and effective learning models are used in a course so that learning outcomes are maximized.

References

- Ally, M. C. (1999). Introduction. In *Radical Philosophy Review* (Vol. 2, Issue 1). https://doi.org/10.5840/radphilrev1999212
- Angga, A., Abidin, Y., & Iskandar, S. (2022). Penerapan Pendidikan Karakter dengan Model Pembelajaran Berbasis Keterampilan Abad 21. *Jurnal Basicedu*, 6(1), 1046–1054. https://doi.org/10.31004/basicedu.v6i1.2084
- Asmuni, A. (2021). Penerapan Model Pembelajaran Inkuiri Berbasis Google Classroom untuk Meningkatkan Kemampuan Berfikir Kritis dan Aktivitas Belajar PAI dan Budi Pekerti pada Peserta Didik SMA Negeri 1 Selong. *Jurnal Teknologi Pendidikan: Jurnal Penelitian Dan Pengembangan Pembelajaran, 6*(1), 26. https://doi.org/10.33394/jtp.v6i1.3593
- Damanik, E. L. (2020). *Kehidupan Sosial Abad 21: Memahami Revolusi Industri Keempat di Indonesia The 21 st Century Social Life: Understanding the Fourth Industrial Revolution in Indonesia. 1*, 41–65.
- Dewi, S. (2023). Penerapan Model Pembelajaran Berbasis Proyek untuk Meningkatkan Hasil Belajar. *PTK: Jurnal Tindakan Kelas*, *3*(2), 204–215. https://doi.org/10.53624/ptk.v3i2.177
- Dini, S. R., & Adri, M. (2021). Perancangan Aplikasi Sistem Pendukung Keputusan Pemilihan Supplier Menggunakan Metode Fuzzy Logic Berbasis Web. *Voteteknika (Vocational Teknik Elektronika Dan Informatika)*, 9(1), 23. https://doi.org/10.24036/voteteknika.v9i1.110551
- Dutta, D. A. K. (2018). An Application to Support Stuttering People by Implementing Linguistic Variable Based on Fuzzy Logic. *International Journal of Computer (IJC), 28*(1), 174–179. http://ijcjournal.org/index.php/InternationalJournalOfComputer/article/view/1175%0A
- Efriyanti, L., & Annas, F. (2020). Aplikasi Mobile Learning Sebagai Sarana Pembelajaran Abad 21 bagi Pendidik dan Peserta Didik di era Revolusi Industri 4.0. *Journal Educative : Journal of Educational Studies, 5*(1), 29. https://doi.org/10.30983/educative.v5i1.3132
- Gentili, P. L. (2022). *Implementing Fuzzy Sets and Processing Fuzzy Logic Information by Molecules*. 94. https://doi.org/10.3390/proceedings2022081094
- K.N. Karyawati, I.W. Suja, & A.A.I.A.R. Sudiatmika. (2022). Pengaruh Model Pembelajaran Berbasis Masalah Dan Kecerdasan Emosional Terhadap Hasil Belajar Kimia Siswa Sma. *Jurnal Pendidikan Dan Pembelajaran IPA Indonesia, 12*(3), 129–139. https://doi.org/10.23887/jppii.v12i3.54496
- Kristiana, A. I., Imsiyah, N., Alfarisi, R., & Kartini, T. (2020). Peningkatan Kompetensi TIK Pendidik dalam Mengembangkan Media Pembelajaran Mobile-learning Berbasis Android Melalui Learning Cycle (3E) bagi Pendidik MAN 3 Jember. *JPKMI (Jurnal Pengabdian*

- Kepada Masyarakat Indonesia), 1(4), 205–213. https://doi.org/10.36596/jpkmi.v1i4.101 Nafiati, D. A. (2021). Revisi taksonomi Bloom: Kognitif, afektif, dan psikomotorik. *Humanika*, 21(2), 151–172. https://doi.org/10.21831/hum.v21i2.29252
- Nasution, V. M., & Prakarsa, G. (2021). Perancangan Aplikasi Fuzzy Logic Untuk Prediksi Kasus Positif Covid-19 Menggunakan Metode Tsukamoto. *Jurnal Media Informatika Budidarma*, *5*(4), 1642. https://doi.org/10.30865/mib.v5i4.3338
- Nurhayani, Yaswinda, & Movitaria, M. A. (2022). Model Evaluasi CIPP Dalam Mengevaluasi Program Pendidikan Karakter Sebagai Fungsi Pendidikan. *Jurnal Inovasi Penelitian*, 2(8), 2353–2362.
- Nurmantika, J. (2022). Prediksi Penerimaan Mahasiswa Baru Pascasarjana dengan Menggunakan Model Simulasi Monte Carlo. *Jurnal Sistim Informasi Dan Teknologi, 3,* 287–291. https://doi.org/10.37034/jsisfotek.v3i4.126
- Pakyürek, M., Aydin, Y., & Mikail, N. (2019). Fuzzy logic applications in horticulture and a sample design for juice volume prediction in pomegranate (Punica Granatum L.). *Applied Ecology and Environmental Research*, 17(2), 2449–2460. https://doi.org/10.15666/aeer/1702_24492460
- Pranolo, A. (2014). Artificial intelligence.
- Rasyid, A. H. A., Yunitasari, B., Susila, I. W., Dewanto, D., Yunus, Y., & Santoso, D. I. (2022). Pengembangan Model Evaluasi Pembelajaran Berbasis Obe. *Jurnal Pendidikan (Teori Dan Praktik)*, 7(1), 8–17. https://doi.org/10.26740/jp.v7n1.p8-17
- Ripani, S. N. (2020). *Peningkatan Kemampuan Kognitif Dengan Model Pembelajaran Creative Problem Solving Dan Media Pembelajaran Mobile Learning Pada Materi Listrik Statis*. http://dx.doi.org/10.31219/osf.io/2356p
- Simanjuntak, M. D. R. (2019). Membangun Ketrampilan 4 C Siswa Dalam Menghadapi Revolusi Industri 4.0. *Prosiding Seminar Nasional Fakultas Ilmu Sosial Universitas Negeri Medan,* 3, 921–929.
- Teddy Nasastra. (2021). Penerapan Fuzzy Logic Tsukamoto Untuk Menentukan Produksi Minyak Mentah (CPO) pada PT. Tri Bakti Sarimas. *JuPerSaTek*, 4(2), 1589–1597.
- Widodo, S., & Wardani, R. K. (2020). Mengajarkan Keterampilan Abad 21 4C. *MODELING: Jurnal Program Studi PGM*, 7(2), 185–197.